KAS-term and KAS-biterm: Datasets and baselines for monolingual and bilingual terminology extraction from academic writing

Nikola Ljubešić, Tomaž Erjavec, Darja Fišer

Abstract

This paper presents two datasets for supervised learning of terminology extraction. The first is focused on monolingual term extraction and is a lexicon-type dataset of Slovene term candidates labeled by four annotators. The second is focused on extracting and linking terms in different languages which are translations of each other. It contains sentences that satisfy patterns in which terms occur frequently with their translations, with manually annotated terms in English, Slovene and other languages, and links between terms and their translations. For each dataset we set up a baseline approach: for monolingual terminology extraction we train an SVM classifier, while for identifying terms in different languages we train a sequential CRF classifier. The datasets and the described baselines are made freely available.

1. Introduction

In this paper we present two new datasets for training term extraction tools developed in the scope of the Slovene national project KAS, *Slovene scientific texts: resources and description*.

KAS-term is a lexicon-type dataset containing term candidates extracted via morphosyntactic patterns from a selection of PhD theses written in Slovene. Each term candidate is annotated by multiple annotators. The dataset is meant to be used for supervised learning of ranking of term candidates extracted from Slovene texts.

KAS-biterm is a sentence-type dataset consisting of sentences that satisfy some patterns that are typical for terms and their translations into other languages such as “*ekstrakcija terminologije* (angl. *term extraction*)”. These sentences are annotated for terms, partial terms and abbreviations in Slovene, English, or other language. Links between the Slovene terms and their terms or abbreviations in the other languages are encoded as well.

On both datasets baseline approaches are defined and evaluated: for monolingual terminology an instance-level SVM binary classifier is defined which uses various co-occurrence statistics as features, while for bilingual terminology a sequence-level CRF classifier is defined which uses context-based features and annotates each token in a candidate sentence with the respective category.

The rest of this paper is structured as follows: Section 2 gives the related work on terminology extraction and describes the KAS corpus of Slovene academic writing, from which the presented datasets are produced. Section 3 describes in detail the monolingual datasets and the implementation and evaluation of our baseline, while Section 4. does the same for the bilingual case. Finally, Section 5 gives some conclusions and directions for future research.

2. Related work

In this section we give a description of related work in monolingual and multilingual terminology extraction.

2.1. Monolingual terminology extraction

A broad overview of linguistic, statistical and hybrid approaches to automatic terminology extraction (ATE) is given in Pazienza et al. (2005).

The term recognition task is usually formulated as a two-step procedure (Nakagawa and Mori, 2003): candidate term extraction followed by term scoring and ranking. We also follow this approach for monolingual term extraction.

There is a number of ATE datasets already available. Handschuh and QasemiZadeh (2014) present ACL RD-TEC, a dataset for evaluating the extraction and classification of terms from literature in the domain of computational linguistics. The dataset is based on the ACL ARC corpus consisting of papers from the ACL anthology. From that corpus more than 83,000 term candidates are extracted via PoS-based filtering, n-gram-based techniques and noun phrase chunking. They are furthermore annotated either as non-terms, technology terms or non-technology terms. Out of the 84k terms, 22k were annotated as being valid while 62k were annotated as invalid. The authors report an observed agreement of 0.758 and Cohen’s κ of 0.517, on a small double-annotated dataset of 250 terms.

A reference dataset for terminology extraction is the GENIA corpus consisting of 2,000 MEDLINE abstracts from scientific publications in biomedical literature that is accompanied by the annotations of 100,000 terms organized in a well-defined ontology (Kim et al., 2003). Another example of a bio-textmining dataset is The Colorado Richly Annotated Full Text Corpus (CRAFT), consisting of 97 articles from the PubMed Central Open Access subset annotated with biomedical concepts (Bada et al., 2012). The authors of the dataset measure weekly inter-annotator agreement with Cohen’s κ of 0.623.
agreement (IAA), showing expected improvements through time, as well as an F1 IAA of above 90% after a few weeks / meetings for five out of six tasks. However, the tasks consisted of applying ontologies on text, and not of labeling terms as an open task.

Another reference dataset is a corpus for the evaluation of term extraction in the domain of automotive engineering (Bernier-Colborne and Drouin, 2014). The authors annotate running text, but allow for evaluation of extracted lists of term candidates.

Combining various statistical predictors in a supervised learning setting is a well known approach in natural language processing and has been also applied to the problem of automatic term extraction. Loukachevitch (2012) combines 16 features, and with their logistic regression combination improves the best single result by removing 30-50% of error, depending on the domain. Similarly, Conrado et al. (2013) show on three domain corpora of Portuguese that a combination of 19 features significantly outperform separate well known statistics for ATE.

A very similar problem to ATE is collocation extraction where Pecina and Schlesinger (2006) obtain 21.53% relative improvement when combining 82 association measures with respect to the best individual measure. They also show that feature selection can bring the number of features down to 17 without a significant loss in the evaluation metric.

2.2. Bilingual terminology extraction

Bilingual terminology extraction is typically performed on parallel data (Daille et al., 1994; Vintar, 2010). Another popular line of research is multilingual term extraction from semi-structured multilingual knowledge bases, such as Wikipedia, relying on explicitly encoded cross-lingual links (Gupta et al., 2008; Erdmann et al., 2008). However, since (extensive) parallel corpora and other types of multilingual knowledge sources are difficult to obtain for a lot of specialized domains, researchers are increasingly proposing approaches that extract terms from partially translated (Nagata et al., 2001) or comparable (Tanaka and Iwasaki, 1996) data, where they extract terms for each language separately and then perform post-hoc term pairing.

In this paper we take a different approach, identifying patterns that are used to express the Slovene term and its translation equivalent into English or another foreign language in largely monolingual scientific texts, thereby considering the task to be a classical sequence annotation task. A similar approach has been proposed by Bond (2008) who used a small set of manually defined patterns to extract bilingual term pairs from the web. Abekawa and Kageura (2009) and Abekawa and Kageura (2011) proposed an extension of this basic approach in which they first extract seed bilingual terms from the available parallel glossaries and then use the seed term pairs to identify typical patterns that are used between them, which then serve as the basis of the large-scale bilingual term extraction from the web.

2.3. The corpus

The KAS corpus (Erjavec et al., 2016) was collected via the Open Science Slovenia aggregator (Ojsteršek et al., 2014) which harvests the (meta)data of the digital libraries of Slovene universities and other research institutions. The corpus contains mainly Bachelors, Masters and Doctoral theses and comprises almost 1 billion tokens. The texts were extracted from PDF files, and, after some filtering and cleaning, were tagged with morphosyntactic descriptions (MSDs) and lemmatised with reldi-tagger¹ (Ljubešić and Erjavec, 2016) using its model for Slovene. Each text in the corpus is accompanied with extensive meta-data, containing also classificatory information, such as CERIF (Common European Research Information Format) keywords.

The current, preliminary, version of the KAS corpus contains 700 PhD theses (40 million tokens) from a large range of disciplines² and it is this subcorpus that was used as the textual basis for the experimental datasets presented in this paper.

3. Monolingual term extraction

3.1. The dataset

For the term extraction experiments presented here we focused on three fields: Chemistry, Computer Science, and Political Science, which we selected by matching them with their CERIF keywords, thus obtaining 48 PhD theses form Chemistry, 105 from Computer Science, and 23 from Political Science.

From these three subcorpores we sampled 5 PhD theses per area and automatically extracted term candidates, using the CollTerm tool (Pinnis et al., 2012) given a set of manually defined term-indicative MSD patterns. These patterns were initially developed for the Sketch Engine (Kilgarriff et al., 2014) terminology extraction module, and are in detail described in Fišer et al. (2016). For the present experiments we used only 31 nominal patterns, from unigrams and up to 4-grams, e.g. Nc.*,*S.*,*Nc.*/Nc.*g.* which finds sequences of *common noun*, preposition, *common noun*, *common noun in the genitive case*, such as adheziv na osnovi topil (adhesive on basis of) solvents = solvent-based adhesive).

Each found term candidate was extracted in the form of its lemma sequence and the most frequent inflected phrase, keeping those that appear at least three times in a doctoral thesis. For manual annotation the candidates were first alphabetically sorted, in order to remove bias coming from frequency or statistical significance of co-occurrence, both types of information being provided by the CollTerm tool.

We produced a separate list of term candidates for each doctoral thesis. These lists were then annotated by four annotators. Annotators, who were graduate students of the three fields in focus, were asked to label each potential term with one of the five labels:

- **in-domain**: words and phrases that represent an in-domain term, i.e. one from the focus field;
- **out-domain**: words and phrases that represent a term from a field other than the one in focus;

¹https://github.com/clarinsi/reldi-tagger
²The body parts of the KAS corpus and the KAS-Dr (PhD theses only) corpus are available for exploring through the concordancer at CLARIN.SI: KonText (http://www.clarin.si/kontext/) and noSketch Engine (http://www.clarin.si/noske/).
We set up a baseline for the task of predicting whether a candidate is a term or not given the variables available in the prepared dataset. We build the baseline as an SVM classifier with scikit-learn (Pedregosa et al., 2011)³.

Given that we have four labels present in our dataset, we defined two mappings (inclusive and exclusive) of the four labels to a binary system of positive and negative classes. Both the inclusive and exclusive mappings take the irrelevant terms as instances of the negative class, but the inclusive mapping considers out-of-domain terms and academic vocabulary to be instances of the positive class, while the exclusive mapping considers them to be negative class instances. In the remainder of the paper we experiment with the more strict, exclusive mapping.

The explanatory variables we have at our disposal are the already mentioned frequency and seven co-occurrence statistics: frequency, dice, chisq, ll, mi, tscore, tfidf, and cvalue.

We consider the response variable to be the rounded average of the human responses, i.e., if three annotators claim an instance to be a term, and one annotator the opposite, the gold response for this term will be 1, i.e., the positive class. In (infrequent) cases where the average is 0.5, it is rounded up to 1.

We separate the prediction of multi-word terms (MWT) and single-word terms (SWT) as for single-word terms the only available variables are the frequency and the tf-idf statistic. For MWTs of all lengths all the seven variables are available.

We give the results on using single statistics, as well as the SVM classifier combining all the statistics in ranking multi-word term instances in a receiver-operating-characteristic (ROC) curve analysis in Figure 2. The ROC curve shows for each separate statistic to be surprisingly close to the random baseline (baseline), but that combining all these statistics in a supervised fashion (all) significantly improves the ranking of term candidates. If we quantify each ranking as an area under curve (AUC), our supervised baseline achieves a value of 0.736, while ranking by specific statistics achieves AUC scores between 0.505 (tscore) and 0.590 (dice).

For SWT ranking, where we have only two statistics at our disposal, namely freq and tf-idf, we calculated AUC scores for each separate statistic, as well as the ranking obtained through supervised learning on the two explanatory variables. The freq variable obtains an AUC of 0.523, tfidf performs much better with AUC of 0.703, while the combination of these two variables achieves an AUC of 0.613. Therefore as our baseline for SWT ranking we propose the tfidf statistic.

Figure 1: JSON encoded monolingual dataset entry

4. Bilingual term extraction
4.1. The dataset

The bilingual term extraction dataset contains complete sentences selected from all the PhD theses from the KAS corpus. We chose only sentences that have a high chance of containing the term in the original language and its translation into Slovene. The sentences were extracted using noSketch Engine via queries in its Corpus Query Language (CQL). After experimenting with various queries we

³The code of the baseline is published on https://github.com/clarinsi/kas-term
middle road between ignoring these terms and marking them with their actual language, by assigning them all the Other language.

- Link between the term and its translation or between the term and its abbreviation (link): as the final goal is to automatically link terms and translations, the manual annotation of the link between the two is essential.

Each sentence was annotated by two annotators and then the differences in annotation were resolved by the curator. Table 1 gives the statistics over the dataset, by query and in total. The numbers of sentences and tokens show that the queries had a significantly different yield, while the "Marked" column gives the number of sentences in which something was annotated, i.e. they contained either a term or abbreviation with its translation; the last query thus not only returned the least sentences, but even the ones returned were typically not marked. The next three columns give the distribution by the type of the entity marked: in all cases, complete terms predominate, with abbreviations being about one tenth as frequent, and partial terms even less. Finally, the last three columns give the distribution by language: naturally, the Slovene and English items are quite similar in size, with other languages representing a very small minority.

The dataset was exported from WebAnno and merged with the source TEI encoding of the corpus as illustrated in Figure 3. Here, the type of term is distinguished by the name of the element (abbr or term) and, in the case of terms, its @type attribute (complete or partial), while the language is distinguished by the value of the standard @xml:id attribute. Furthermore, the value of the @subtype gives the tag as it was used in WebAnno. The linkings are made via the @corresp attribute, which points to the value of the @xml:id attribute of the relevant term(s) or abbreviation(s). It should be noted that all the pointers are two-way.

The dataset is freely available in the scope of the CLARIN.SI repository (Erjavec et al., 2018a).

4.2. Baseline

Given that in this task we have running text instances annotated per token with term information, we frame this task as a sequence labeling task. Similar as with the task of monolingual term prediction, we use the traditional method applicable given the type of data: we use CRF, in particular the CRFSuite implementation (Okazaki, 2007).

The baseline is published on https://github.com/clarinsi/kas-biterm.

Since the first pattern is the most productive one, as well as having a much higher precision than the remaining two patterns, we run the baseline experiments only on the 1,000 sentences following that pattern. The goal of the defined baselines is, namely, not only to set the stage for future experiments, but also to produce systems that will be easily applicable to various datasets, starting with the full KAS corpus. We split the available instances 80:20 into a training and a testing set.

We experimented with various features and, given the results of our experiments, we kept the following ones:

- Type of term (full term, partial term, abbreviation): this distinction was made as the sample showed that the sentences often contain not only complete terms, but also terms which only partially cover its corresponding translation or original. Furthermore, the context of many terms or their translations also contains their abbreviation.
- Language of the term (Slovene, English, Other): even though our focus was on Slovene-English pairs, some found terms were also in other languages. We chose a
Table 1: Statistics over the BiTerm dataset

<table>
<thead>
<tr>
<th>Query</th>
<th>Tokens</th>
<th>Sents</th>
<th>Marked</th>
<th>Complete</th>
<th>Partial</th>
<th>Abbrev</th>
<th>sl</th>
<th>en</th>
<th>und</th>
</tr>
</thead>
<tbody>
<tr>
<td>q1</td>
<td>36,716</td>
<td>1,000</td>
<td>864</td>
<td>2,134</td>
<td>141</td>
<td>299</td>
<td>1,159</td>
<td>1,392</td>
<td>23</td>
</tr>
<tr>
<td>q2</td>
<td>34,773</td>
<td>787</td>
<td>472</td>
<td>1,324</td>
<td>51</td>
<td>169</td>
<td>696</td>
<td>707</td>
<td>141</td>
</tr>
<tr>
<td>q3</td>
<td>7,002</td>
<td>165</td>
<td>36</td>
<td>81</td>
<td>1</td>
<td>1</td>
<td>40</td>
<td>39</td>
<td>4</td>
</tr>
<tr>
<td>Σ</td>
<td>78,491</td>
<td>1,952</td>
<td>1,327</td>
<td>3,539</td>
<td>193</td>
<td>469</td>
<td>1,895</td>
<td>2,138</td>
<td>168</td>
</tr>
</tbody>
</table>

While performing baseline experiments, we calculated the informativeness of each feature set by performing ablation experiments. We ablated specific features, but also the set of features based on the focus token and the set of features based on the context window. We present the results of the ablation experiments in Table 2.

The results show that the most relevant feature sets are those of the focus token’s context window, with the largest loss when all window features are removed (8.89% relative loss), followed by the setup where all focus token features are removed (2.65% relative loss). Removing specific features generates a relative loss ranging between 1% and 0.1%.

We also experimented with other features, but they decreased our results. These are the features with their relative loss when added to the optimal feature set:

- focus token character 5-grams (best performing length), extended with a initial and ending character (loss of 0.2%)
- MSDs in a -3...3 window (loss of 0.3%)
- 100 embedding dimensions learnt from the slWaC corpus with fasttext using the skipgram model (loss of 0.3%)

The most surprising among the negative results is the loss when word embedding features are added to the sequential classifier. This result can probably be explained with the sensitivity of the CRF classifier to irrelevant features as most of the embedding dimensions do not hold any relevant information for the task at hand.

The full results of our best performing system (comparable to the system in ablation experiments with no ablated features) are presented in Table 3. As expected, the SL-ABBR class performs the worse as the number of tokens annotated with this label is by far the lowest. The class SL-TERM is better predicted as the class SL-TERM, which is also not surprising as identifying the borders of an English term in Slovene text is much easier than the borders of a Slovene term. Regarding the balance between precision and recall, there are no surprises with a good overall balance.

Figure 3: Example of a TEI bilingual term annotation for the segment **MSD oblikoskladenjske oznake (angl. Morpho Syntactic Description)**.

- focus token: lowercased token for which features are currently extracted
- focus MSD: morphosyntactic description of the focus token
- focus PoS: part-of-speech of the focus token (first two letters of the morphosyntactic description tag)
- focus token length: number of characters in the focus token
- focus token case (lower, upper, title)
- lower cased tokens in a -3...3 window
- PoS tags in a -3...3 window

While performing baseline experiments, we calculated the informativeness of each feature set by performing ablation experiments. We ablated specific features, but also the set of features based on the focus token and the set of features based on the context window. We present the results of the ablation experiments in Table 2.

The results show that the most relevant feature sets are those of the focus token’s context window, with the largest loss when all window features are removed (8.89% relative loss), followed by the setup where all focus token features are removed (2.65% relative loss). Removing specific features generates a relative loss ranging between 1% and 0.1%.

We also experimented with other features, but they decreased our results. These are the features with their relative loss when added to the optimal feature set:

- focus token character 5-grams (best performing length), extended with a initial and ending character (loss of 0.2%)
- MSDs in a -3...3 window (loss of 0.3%)
- 100 embedding dimensions learnt from the slWaC corpus with fasttext using the skipgram model (loss of 0.3%)

The most surprising among the negative results is the loss when word embedding features are added to the sequential classifier. This result can probably be explained with the sensitivity of the CRF classifier to irrelevant features as most of the embedding dimensions do not hold any relevant information for the task at hand.

The full results of our best performing system (comparable to the system in ablation experiments with no ablated features) are presented in Table 3. As expected, the SL-ABBR class performs the worse as the number of tokens annotated with this label is by far the lowest. The class SL-TERM is better predicted as the class SL-TERM, which is also not surprising as identifying the borders of an English term in Slovene text is much easier than the borders of a Slovene term. Regarding the balance between precision and recall, there are no surprises with a good overall balance.
Table 2: Ablation experiments over the feature sets used for bilingual term extraction. The labels the results are given for are: O (other), SL-TERM (Slovene term), SL-ABBR (Slovene abbreviation), EN-TERM (English term), EN-ABBR (English abbreviation).

<table>
<thead>
<tr>
<th>Ablated features</th>
<th>0</th>
<th>SL-TERM</th>
<th>SL-ABBR</th>
<th>EN-TERM</th>
<th>EN-ABBR</th>
<th>weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>6177</td>
<td>601</td>
<td>10</td>
<td>527</td>
<td>66</td>
<td>7381</td>
</tr>
<tr>
<td>support</td>
<td>0.969</td>
<td>0.789</td>
<td>0.000</td>
<td>0.896</td>
<td>0.683</td>
<td>0.945</td>
</tr>
<tr>
<td>focus token</td>
<td>0.968</td>
<td>0.778</td>
<td>0.000</td>
<td>0.896</td>
<td>0.634</td>
<td>0.943</td>
</tr>
<tr>
<td>focus MSD</td>
<td>0.968</td>
<td>0.776</td>
<td>0.000</td>
<td>0.892</td>
<td>0.710</td>
<td>0.943</td>
</tr>
<tr>
<td>focus PoS</td>
<td>0.966</td>
<td>0.755</td>
<td>0.000</td>
<td>0.890</td>
<td>0.708</td>
<td>0.940</td>
</tr>
<tr>
<td>focus length</td>
<td>0.968</td>
<td>0.773</td>
<td>0.000</td>
<td>0.894</td>
<td>0.698</td>
<td>0.943</td>
</tr>
<tr>
<td>focus case</td>
<td>0.969</td>
<td>0.778</td>
<td>0.000</td>
<td>0.895</td>
<td>0.650</td>
<td>0.944</td>
</tr>
<tr>
<td>all focus token</td>
<td>0.957</td>
<td>0.702</td>
<td>0.000</td>
<td>0.815</td>
<td>0.452</td>
<td>0.920</td>
</tr>
<tr>
<td>tokens in window</td>
<td>0.964</td>
<td>0.733</td>
<td>0.000</td>
<td>0.894</td>
<td>0.625</td>
<td>0.936</td>
</tr>
<tr>
<td>PoS in window</td>
<td>0.968</td>
<td>0.771</td>
<td>0.000</td>
<td>0.896</td>
<td>0.672</td>
<td>0.943</td>
</tr>
<tr>
<td>all window</td>
<td>0.924</td>
<td>0.289</td>
<td>0.000</td>
<td>0.845</td>
<td>0.370</td>
<td>0.861</td>
</tr>
</tbody>
</table>

Table 3: Final experiment on bilingual term extraction.

<table>
<thead>
<tr>
<th>Metric</th>
<th>0</th>
<th>SL-TERM</th>
<th>SL-ABBR</th>
<th>EN-TERM</th>
<th>EN-ABBR</th>
<th>weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>precision</td>
<td>0.965</td>
<td>0.839</td>
<td>0.000</td>
<td>0.872</td>
<td>0.737</td>
<td>0.945</td>
</tr>
<tr>
<td>recall</td>
<td>0.974</td>
<td>0.745</td>
<td>0.000</td>
<td>0.920</td>
<td>0.636</td>
<td>0.947</td>
</tr>
<tr>
<td>F1</td>
<td>0.969</td>
<td>0.789</td>
<td>0.000</td>
<td>0.896</td>
<td>0.683</td>
<td>0.945</td>
</tr>
</tbody>
</table>

5. Conclusions

We presented two newly developed manually annotated datasets for Slovene: the KAS-term dataset for learning monolingual term extraction and the KAS-biterm dataset for learning bilingual term extraction.

We set up baseline approaches with good, far from random results. However, we strongly believe that these results can further be improved and encourage other researchers and NLP practitioners to improve over these baselines and share their results.

Acknowledgements

We would like to thank the three anonymous reviewers for their helpful comments. We are also indebted to Špela Arhar Holdt and Maja Bitenc for conducting the annotation campaigns, to the the students who participated in the annotation process, and to their supervisors, Urban Bren, Marko Robnik Šikonja, and Boštjan Udovič. The research described in the paper was supported by the project ARRS J6-7094 “Slovene scientific texts: resources and description”.

6. References

Francis Bond. 2008. Extracting bilingual terms from mainly monolingual data. In 14th Annual Meeting of the Association for Natural Language Processing, Tokyo.

Tomaž Erjavec, Darja Fišer, Nikola Ljubešić, and Maja Bi-

