

Beyond example extraction: Quantitative analysis of the JANES corpus

Maja Miličević University of Belgrade

Slovenščina na spletu in v novih medijih Ljubljana, 25 November 2015

<ロト < (回) < (回) < (回) < (回) < (回) < ((u)) < ((u))

Before we begin

Why this tutorial?

A BNC example

What is used more frequently, *tutorial* or *workshop*?

[lemma = "tutorial"] \rightarrow f=506, [lemma = "workshop"] \rightarrow f=2930 $\chi^2{=}1710,\,df{=}1,\,p{<}0.001$

A JANES example

What is used more frequently, delavnica, workshop or tutorial?

[lemma = "delavnica"] \rightarrow f=7873, [lemma = "workshop"] \rightarrow f=78, [lemma = "tutorial"] \rightarrow f=303

 χ^2 =14310, df=2, p<0.001

Overview

1. Analysing corpus data: How and why?

- Introduction to quantitative corpus studies
- R: Basics, data formats and related issues

2. Describing and visualising corpus data

- Descriptive statistics
- Graphs

3. Generalising from corpus data

- Statistical hypothesis testing
- Some inferential tests

Theory combined with practical examples:

- Examples to do together (full code available)
- Examples to do on your own (by modifying the code)
- Everything based on data extracted from JANES (tweets)

Where to find the data and code?

- JANES conference website: http://nl.ijs.si/janes/dogodki/konferenca-2015/
- Files tviti.1000.csv, tviti.freq.csv, code.txt download these files into your R working directory

Overview of topics

1. Analysing corpus data: How and why?

- Introduction to quantitative corpus studies
- R: Basics, data formats and related issues

Doing analyses of corpora

http://nl.ijs.si/noske/all.cgi/first_form

NoSketch	TEngine										0			
											Search			in neip
user: defaults	corpus: KRES (uravnoteženi)								Search			in	KRES (uravnoteženi)	0
Concordance Word List Corpus Info	Query vendarle 9,275 Page 1 of 464 G	i (77.0 per million) io <u>Next Last</u>												
3	drugo	Žal . To je problemat	ično zato , ker se v r	adikalni delitvi i	izgubi zavest	t , da vsem ra	azlikam navi	kljub vendar	le /vendarle/V	, obstaja nel	kaj trdnejšej	a, ka	r omogoča skupno ži	vljenje . Sj
Save Subcorpus name:	drugo z drugo poja drugo njir drugo	aradi veta državnega sv asnila ali prikaza naspro mi svet ni zrasel ali posi Opozicija je z » novina	eta in grožnje opozic tnih dejstev , kot ga al okrogel , pa venda sko akcijo « v tujini	cije z referendur i predvideva med ar Če govorim poskušala očrnit	unom ni bil uv idijska zakono no o ženskih z iti vlado in (si	veljavljen , je odaja , po naš zadevah , nan svojo ?) držav	je zakonoda išem preprič m je Franco ivo , toda Ev	jalec vendar jalec vendar janju vendar zinja vendar ropa vendar	le /vendarle/V le /vendarle/V le /vendarle/V le /vendarle/V le /vendarle/V	, ohranil tre , ni namenje , podarila ne , ni od včera	nost . Čepra n takšnim p kaj skoraj č j , da bi lahl	iv je p ispevl arovni ko traj	oo ministrovem mner kom , kot je bil zadn ških trikov . In veliko jno nasedla komunisi	iju (in tudi ji odgovor sloga . Sv ičnim splet
	drugo pr	ripombe . Zakon je sice	r nujen , saj se poseg	; gi , ki škodujejo	ekosistemu v	v TNP , dogaj	jajo kar nap	rej . Vendar	le /vendarle/V	pa pričaku	ejo , da bo	ninist	rstvo njihove pripom	be upoštev
as subcorpus	drugo lan	sko leto nabralo kar šes	t milijonov evrov izg	ube . Večina člai	anov sveta je	nazadnje san	nacijski pro	gram vendar	le /vendarle/V	podprla . P	rogram , ki s	o ga F	Rojcu pomagali sesta	∕iti še trije
View options KWIC	drugo Mladinska knjiga vodn	ranili in ne da bi bese iemu toku . × Z nekom ,	iilo zdrknilo v pretira ki vas ljubi ! No , na	ano tendenčnost ijbrž ne z Ludvík	t , pa je goto kom = histerič	.vo še teže . λ ični smeh iz π	Morda pa bi ruske skupin	si Vi vendar e = a vendar	le /vendarle/V le /vendarle/V	, upali ? - Le	tos spet nan si , da ležite	erava tam	mo v prilogi Za starš , obdani z vsem kralj	e za vsak n evskim bav
Sentence	Mladinska knjiga razp	oloženje negotovega p	eživetja . Obdan z je	ezo , ki mu je no	iova in pogosti	to tuja , se v l	trenutkih o	bupa <mark>vendar</mark>	le /vendarle/V	vpraša , al	so tudi njeg	ovi to	wariši iskalci in skriv	nostneži , I
Sort	Mladinska knjiga	da ga ne smejo najti	. Tvoja tovarišica Er	na je stara sablj	ija , poskrbela	a bo , da ga p	po naključju	i kdo vendar	le /vendarle/V	ne bi odkri	. Fant je va	iba : p	produkt skupne opera	cije nas in
Left	Mladinska knjiga Potem	n še malo posluša in pod	asi se mu začenja sv	ritati . ' Cakaj ma	nalo , če prav	razumem, se	sem navseza	idnje vendar	le /vendarle/V	, nekdo . Mo	rda mi tega	, kako	pomemben človek s	em , kljub
Right	Mladinska knjiga	So te spet popadu stral	novi ? Morda bi ti mor	ral najti zamenja	javo . Se vedn	no hodi navkn	reber . More	ta bo vendar	/vendarle/V	za vse posł	rbel Gospod	. Att 1	Rourke . Ali pa Dimit	n , odkar s
Node	Miadinska knjiga	. vstane in s kozarcem	v roki odnoe na podst	cresje, za vsak p	primer, ce se	.e je sasa po #	kaksnem cu	oezu vendar	IC /vendarle/V	, vrnit in zas	pat na tisten	1 KUPU	i zasilne posteljnine	, toda med
Shuffle	drugo IIs	soosablianie je živlieni	ko nomembro za člo	veka a čenrav	, nastovit sem / se je treba u	i jo morda to učiti vse živlij	ienie ieuč	enie vendar	/vendarle/V	boli prisoti	notoskem ru	elu na	je sla za meu : Prou šega živlienia – Ker	iti sino jo t
Sample Filter Overlaps	Dnevnik ir Mladinska knjiga člove drugo	skim nacionalistom , na ka doseže svojo mejo t pritegniti in bi i	j razumejo bojazni s am , kjer množica bo o tudi radi storili , p	severnoirskih uni olezenskih povzre a ne morejo , ke	ionistov in po ročiteljev ali : er jo slišijo pi	snovi obvlada srovi v življenj	blikance , n la organizem nju . Pritegn	aj se vendar 1 , je vendar ili so vendar	le /vendarle/V le /vendarle/V le /vendarle/V	začnejo ra: tista bistve , bolj napa	toroževati , na moč v člo čno kot prav	je dal weku , in p	velik poudarek tudi , ki mu omogoča pre esem je postala prot	dobrim odr živetje . Ka i koncu res
Frequency Node tags Node forms Doc IDs	Page 1 of 464 G	o <u>next</u> Last					Interfa	ice language:	English čer	Sket ky 简体中 :	ch Engine (v 文 繁體中文	er:2.3	Lexical X 11-open-2.121.1-open eilge slovenščina	Computing 1-3.56.8) hrvatski

Doing more analyses of corpora

Word list						
Corpus: KRES (uravnoteženi)						
Page 1		Go	<u>Next ></u>			
word	Fre	eq.				
je	3,289	<u>,979</u>				
in	2,690	<u>,587</u>				
v	<u>2,163</u>	<u>,634</u>				
se	<u>1,523</u>	<u>,325</u>				
na	<u>1,356</u>	<u>,374</u>				
da	<u>1,244</u>	<u>,624</u>				
za	<u>1,086</u>	<u>,084</u>				
ki	<u>983</u>	<u>,036</u>				
so	<u>930</u>	<u>,592</u>				
ра	<u>809</u>	<u>,557</u>				
z	<u>712</u>	<u>,334</u>				
ne	<u>610</u>	<u>,613</u>				
s	<u>548</u>	<u>,506</u>				
tudi	<u>532</u>	<u>,618</u>				
bi	<u>529</u>	<u>,003</u>				
kot	<u>425</u>	<u>,159</u>				
ро	<u>404</u>	<u>,952</u>				
še	383	<u>,543</u>				
bo	<u>379</u>	<u>,432</u>				
ali	374	,726				

Collocation candidates							
Page 1 Go <u>Next ></u>							
	Freq	T-score	<u>MI</u>				
P N ne	304	14.356	2.501				
P N uspeti	149	12.056	6.339				
P N lahko	164	10.628	2.556				
P N priti	119	10.212	3.970				
P N še	148	9.496	2.188				
P N morati	108	8.991	2.891				
<u>P N</u> treba	77	8.261	4.094				
P N odločiti	67	7.869	4.694				
<u>P N</u> dobiti	71	7.787	3.720				
<u>P N</u> najti	67	7.689	4.044				
P N nekaj	80	7.670	2.812				
P N nekolika	b 61	7.611	5.289				
<u>P N</u> biti	798	7.570	0.450				
P N imeti	100	7.116	1.794				
<u>P N</u> začeti	62	7.030	3.223				
P N obstajat	i 49	6.768	4.917				
P N ostati	50	6.570	3.818				
P N zgoditi	45	6.327	4.137				
<u>P N</u> pa	138	6.168	1.074				
<u>P N</u> iti	54	5.888	2.331				
P N malce	31	5.415	5.189				

Doing quantitative analyses of corpora

Three main kinds/formats of corpus data:

- Concordances
- Frequency lists
- Collocations

All three involve numbers:

- How many times does a certain unit appear in a corpus?
- How are words distributed by frequency?
- How strongly are words associated to each other?

What happens after these initial numbers are obtained?

Additional aspects of quantification

Even though many studies based on data from corpora have a quantitative dimension, many among them do **not** belong to the typical **quantitative research paradigm**

What tends to be missing?

- A hypothesis
- A clear identification and definition of variables
- Inferential statistical tests

Why is this a problem?

While studies missing the above can constitute valuable language descriptions, their findings are **difficult or impossible to generalise**

Quantitative research paradigm

Hypothethical-inferential approach in science:

Start from **theory** \rightarrow formulate **hypothesis** \rightarrow develop **methodology** \rightarrow collect **data** \rightarrow analyse **data** \rightarrow accept/refute **hypothesis**

(In many cases predictions are tested directly, and hypotheses only indirectly)

Again, this is far from meaning that exploratory studies are not useful they are, for instance, crucial for developing future hypothesis; the hypothesis formulation process can in fact go both ways

• Cf. the issue of **corpus-based** vs. **corpus-driven** linguistics, i.e. using corpora to *test* vs. to *derive* hypothesis

The role of statistics in linguistic research

In linguistics, there is barely ever access to the **population** researchers are interested in, which can be infinite (Slovene language, nonstandard Slovene language, etc.), so research needs to be based on **samples**

Two kinds of statistics:

- Descriptive statistics describes a sample
- Inferential statistics enables generalisation outside the sample

Samples should (ideally) be:

- Representative a major issue in corpus linguistics
- Sufficiently large small samples are much more prone to non-systematic variation

From research question to generalisation

For inferential statistical tests to be meaningful, what remains central is the **linguistic question** - no statistical analysis will turn a theoretically unsound study into a valid scientific contribution

To maintain theoretical relevance *and* enable generalisation in corpus-based research:

- 1. Find a question that is worth exploring
- 2. Make sure the question can be addressed with corpora
- 3. Make sure relevant corpora and relevant data are available
- 4. Formulate the question in a way appropriate for statistical analysis

Think about how you will analyse the data **before** collecting them!

The importance of research design

How to go about addressing these issues?

- 1. Find a question that is worth exploring
- 2. Make sure the question can be addressed with corpora \rightarrow other types of data more suited? phenomenon too infrequent?
- 3. Make sure relevant corpora and relevant data are available \rightarrow data (in)availability will often influence the research question
- 4. Formulate the question in a way appropriate for statistical analysis \rightarrow research design

Research design

A plan that specifies the **variables** that will be explored, and the ways they will be measured and analysed

Variable types based on the role in the research design:

- Dependent variable(s)
 - \rightarrow phenomena that we study; a necessary component of research

• Independent variable(s)

 \rightarrow factors whose relationship to (impact on?) the dependent variable(s) we want to explore; they can (rarely) be absent (cf. the workshop vs. tutorial example)

Example: In a study that looks at the use of emoticons in tweets written by female and male users, the use of emoticons is the dependent, and user gender the independent variable

Operationalising variables

Another important notion is that of variable **operationalisation**, i.e. decision on how a variable will be measured

Operationalisation has a theoretical side (what exactly is X - e.g. language standardness – and what is a good indicator of X), but it should also involve statistical (as well as practical) considerations

Many variables can be operationalised in more than one way, depending on the question we want to answer and the kind of data we have available:

- Age: Young, Middle-aged, Old vs. 20, 21, 37, 68, 31...
- Standardness scores (JANES): L1, L2, L3 vs. 1.1, 1.6, 2.7...

The choice of statistical analysis is heavily dependent on how variables are operationalised

Measuring variables (1)

Variable types based on measurement:

- Qualitative or categorical variables gender, part of speech, native language, register, style...
- Quantitative or numerical variables
 - **Discrete variables** counted (can only take some values) shoe size, number of students, absolute corpus frequencies (number of words/characters/syllables)...
 - **Continuous variables** measured (can take any value in a range) age, height, weight, reaction time in experiments...

Measuring variables (2)

In terms of measurement scales:

- Nominal scale → categorical variables gender, part of speech, native language, register, style...
- Ordinal scale → rank-based variables, intervals between points not necessarily equal (closer to categorical, than to numerical variables) Likert scales of the "strongly disagree … strongly agree" type, army/university ranks, frequency ranks...
- Interval scale \rightarrow numerical variables with an arbitrary 0 and equal intervals between points, but without meaningful ratios temperature (C, F, R; 0°C=32°F, 10°C=50°F, 20°C=68°F), IQ...
- Ratio scale → numerical variables with a meaningful 0 (=absence) and meaningful ratios temperature (K), time, corpus frequencies...

Further clarifications

An additional distinction relevant for categorical data:

- Binary variables → two possible values yes/no, true/false, active/passive, male/female, corporate/private...
- Non-binary variables \rightarrow more than two possible values true/false/not given, positive/neutral/negative, L1/L2/L3...

Interval and ratio scales are treated equally in most statistical analyses

Research designs

Some common research designs by variable type(s):

- Frequency-based designs \rightarrow one or more categorical variables
- Correlational designs \rightarrow at least two numerical variables
- Variance-based designs \rightarrow categorical independent, numerical dependent variable(s) at least one of each

This list is by no means exhaustive!

Choosing the design

Different designs are possible with the same variables, depending on how they are operationalised; e.g. for the standardness scores in JANES:

- Ordinal scores (L1, L2, L3; T1, T2, T3) → a lot like nominal scores (few values), can be used as categorical (independent) variables in variance- and frequency-based designs, possibly as ordinal (dependent) variables in correlational and variance-based designs
- Interval scores (1.1, 1.6, 2.7...) \rightarrow can be used in correlational designs, or as dependent variables in variance-based designs

Research designs and statistical tests

Typical design \rightarrow test mappings:

- Frequency-based \rightarrow Chi-square test(s) categorical variables, analysing frequencies of mutually exclusive categories
- <u>Correlational</u> \rightarrow <u>correlation test</u> numerical variables, analysing the extent to which they co-vary
- Variance-based (two samples) \rightarrow Wilcoxon rank sum test / t-test categorical independent and numerical dependent variable, analysing whether two (sub)categories differ from each other
- Variance-based (more than two samples) $\rightarrow \frac{\text{Kruskal-Wallis test }}{\text{one-way ANOVA}}$ analysing whether more than two (sub)categories differ

Some particularities of corpora

Some factors that can make corpus data difficult to analyse:

- Corpora as wholes or as collections of individual texts?
 - Analysis by texts usually more reliable (variation between texts taken into account)
 - Availability of data on/from individual texts? Very short individual texts (such as tweets)?
- Absolute or relative frequencies?
 - Absolute fine for same-sized samples
 - Percentages or normalised frequencies (e.g. pmw) otherwise
- Tokens or types?
 - Depends on the research question
 - 'Type' can have different meanings (words vs. constructions)
- How are corpus data distributed?
 - Often not in compliance with statistical desiderata

R

https://www.r-project.org

Data formats

Two things to be careful about:

• File formats

- .csv vs. .txt files
- Comma-delimited (read.csv) vs. tab-delimited (read.delim)
- Use read.csv2 for semi-colon delimited files, read.delim2 for tab-delimited files with comma as the decimal mark (important for operating systems set to Slovene regional settings)

Character encoding

 Excel does not handle diacritics well when saving to .csv or .txt; if your data files contain funny characters (č, š, ž...), the easiest thing to do is to use (freely avalilable) LibreOffice Calc for saving tables

What will we work on?

Two data sets:

- tviti.freq.csv a set of tables containing frequency data extracted from the Twitter subcorpus of JANES, based on available metadata (more info about the (sub)corpus: http://nl.ijs.si/janes/wp-content/uploads/2015/11/ JANES15-04-Razvoj-korpusa.pdf)
- tviti.1000.csv various metadata and some other data (numeric standardness scores, number of words, number of emoticons, number of punctuation symbols, etc.) for a random sample of 1000 tweets

What they will look like in R:

- tviti.freq.csv will be used to create crosstabs
- tviti.1000.csv will be imported into R as a data frame

The commands you will need are provided in the file code.txt

Crosstabs

The example below shows the number of tweets marked 1, 2 and 3 for linguistic standardness, separately for female and male users - the tweets are **cross-classified** by gender and linguistic standardness

L1 L2 L3 female 782005 268733 100562 male 1748410 506605 144350

The data frame

A portion of the data frame we will create and use is shown below

	id	favorited	retweeted	standard_tech	standard_tech_n	standard_ling	standard_ling_n
1	tid.349449846106759168	0	0	T1	1.1	LĨ	1.2
2	tid.362949301527252992	1	3	T1	1.1	L1	1.2
3	tid.389334386929201152	0	0	T1	1.2	L1	1.0
4	tid.399105094555144192	0	0	T1	1.2	L1	1.4
5	tid.483870924664737792	1	0	T1	1.2	L2	1.8
6	tid.292193119292780544	0	0	Т3	2.9	L1	1.6

Note the following:

- Each column shows one variable
- You can see from the values if a variable is categorical or numerical
- The different values are different variable levels
- The first row contains the header with variable names
- All data on one row is about one and the same tweet

Overview of topics

2. Describing and visualising corpus data

- Descriptive statistics
- Graphs

ロトメポトメミトメミト・ミークへの

What is descriptive statistics used for?

Descriptive statistical measures are important:

- As summary information about the data in the sample
- As starting points for inferential analysis

Typically, descriptive statistical measures show:

- The grouping of data around some value
 - \rightarrow measures of central tendency
- The overall distribution of different values in the data \rightarrow positional measures
- The dispersion of data around that value
 - \rightarrow measures of dispersion

Graphs can also be seen as part of descriptive statistical analysis, and there is no better way of getting an idea of what a data set is like than looking at its graphical representation

Measures of central tendency

Two main measures:

• Arithmetic mean

- the result of averaging the values of individual data points
- should only be used for interval and ratio scale data
- very sensitive to extreme values

Median

- the central value in an ordered list of data values
- splits the data in two halves
- 1, 1, 2, 3, 4, 5, 7 ightarrow 3 // 1, 1, 2, 3, 4, 5, 7, 11 ightarrow 3.5
- obligatory for ordinal, can be used for interval/ratio data
- more robust to extreme values than the mean

Positional measures

Measures of central tendency are also referred to as "location" measures, but not all positional measures reflect a central value:

• Percentiles

• values that split an ordered set of data values into 100 points

• Quartiles

- values that split an ordered set of data values into quarters
- Q1=25th percentile, Q2=50th percentile, Q3=75th percentile
- 1, 1, 2, 3, 4, 5, 7, 11, $12 \rightarrow Q1=1.5$, Q2=4 (=median), Q3=9 (this is just one possible methods for calculating quartiles, R implements 9 different ones)

Measures of dispersion

Three main measures:

• Variance

- the average of squared differences from the mean
- should only be used for interval/ratio data

Standard deviation

- square root of variance, easier to interpret
- can be used to define outliers (data points 2 or more SDs from the mean)
- Interquartile range (IQR)
 - the difference between Q3 and Q1
 - can be used to define outliers (data points below Q1-1.5*IQR and above Q3+1.5*IQR)

Obtaining descriptive measures in R

Function	Result
mean()	mean
<pre>median()</pre>	median
var()	variance
sd()	standard deviation
IQR()	interquartile range
max()	maximum value
max()	minimum value
quantile()	0% (min), 25% (1st quartile), 50% (median),
	75% (3rd quartile), 100% (max)
<pre>summary()</pre>	mean, median, 1st and 3rd quartiles, min, max
sum()	frequency counts
<pre>table()</pre>	frequency counts
<pre>stat.desc()</pre>	available via the pastecs package
count()	available via the plyr package

Graph types

Different kinds of graphs are appropriate for different types of data:

- The well-known types:
 - Scatterplots two numeric variables, individual data
 - Bar charts for summary values, usually grouped by some factor
 - Line charts for summary values, usually grouped by some factor; can also be useful for seeing trends in individual data
- Somewhat less-known types (in linguistic research):
 - Histograms for data distributions
 - Mosaic plots for frequencies by categories
 - Boxplots for data distributions, with a focus on central tendencies

34 / 57

Some simple examples - scatterplots

Number of tokens vs. number of words

Technical vs. linguistic standardness

tviti\$standard tech n

Some simple examples - histograms

Some simple examples - mosaic plots

Tweet sentiment by user gender

Linguistic by technical standardness

L.by.T.standardness.1000

Some simple examples - boxplots

Linguistic standardness by user gender

Technical standardness by user gender

Doing graphs in R

How to do graphs in R?

- Base options cover all of the above graph types
- Specialised packages (e.g. lattice, ggplot2, and others)

Graphs open in a separate window in R console; from that window, they can be saved in different formats (pdf, png, jpg...)

Note that creating a new graph overwrites the previous graph; to avoid overwriting, open a new graph window before creating a new graph:

Windows - windows() Mac OS X - quartz()

Main plotting commands

The above six graph types are covered by five functions:

Function	Graph type
plot()	scatterplot, line chart
<pre>barplot()</pre>	bar chart
hist()	histogram
<pre>mosaicplot()</pre>	mosaic plot
<pre>boxplot()</pre>	boxplot

Options that can be specified are numerous and varied, ranging from graph titles and bar colours, to the range of information about the data that can be added; R uses default options if not instructed otherwise, but it can be instructed to change pretty much anything

Overview of topics

3. Generalising from corpus data

- Statistical hypothesis testing
- Some inferential tests

Back to where we began

What do these numbers mean?

A BNC example

What is used more frequently, *tutorial* or *workshop*?

[lemma = "tutorial"] \rightarrow f=506, [lemma = "workshop"] \rightarrow f=2930 $\chi^2{=}1710,\,df{=}1,\,p{<}0.001$

A JANES example

What is used more frequently, delavnica, workshop or tutorial?

[lemma = "delavnica"]
$$\rightarrow$$
 f=7873, [lemma = "workshop"] \rightarrow f=78, [lemma = "tutorial"] \rightarrow f=303

 χ^2 =14310, df=2, p<0.001

Statistical significance

Generalisability of sample findings is commonly related to the notion of **statistical significance** of results

Statistical significance is in turn related to **probability**, which can simply be defined as the chance of an event occurring; probability ranges from 0 to 1, i.e. from 0% to 100%

A statistically significant test result indicates a low probability of a research result being due to chance; information on significance is usually expressed as p>0.05 or p<0.05, p<0.01, $p<0.001 \rightarrow$ these figures stand for non-significant results vs. three different significance levels (5%, 1% and 0.1% chance of data being due to chance)

The choice of the 5% level as the cut-off point is a matter of convention

What is actually tested?

Two main kinds of hypotheses:

- Null hypothesis (H₀) assumption that the variables under study are **not** related; this result is what would be expected by chance alone
- Alternative hypothesis (H_a or H₁) research hypothesis (what we actually start from), assumption that the variables under study are related

Even though researchers mostly start their research by assuming a relationship between variables (so some form of H_1), what is actually tested statistically is the H_0

Null Hypothesis Statistical Testing (NHST)

From the perspective of statistics, the only conclusions that can be drawn from an inferential analysis are that **the null hypothesis** <u>can</u> or <u>cannot</u> **be rejected**

Significance levels obtained through statistical tests show the probability of the data given the H_0 (not the other way round!)

A word of caution:

NHST is often criticised due to the arbitrariness of the 5% significance level (and some other things); this does not mean that we have just wasted a day, this statistical paradigm is still widely used, just be careful about how you interpret your results!

(see e.g. https://www.sciencebasedmedicine.org/

psychology-journal-bans-significance-testing/)

Main results of statistical tests

Typical output from statistical tests contains at least:

- A test statistic (χ^2 , t, F, W...)
- A p value
- Typically, the number of **degrees of freedom**, which are an indication of sample size (or row and column numbers in crosstabs)

These values are reported when writing up the results

In addition, it is highly desirable to calculate and report the effect size (https://en.wikipedia.org/wiki/Effect_size), which provides a measure of how meaningful the results are for the given sample size (for large samples significant results can be due to sample size alone)

Parametric vs. nonparametric tests

Two sets of tests that are chosen based on the numerical properties of the data and on their distribution

Parametric tests, which are more powerful, can only be used:

- On interval/ratio scale data
- On normally distributed data
- (On samples with equal variances)

Normality can be checked graphically (e.g. with histograms) and with special tests (e.g. Shapiro-Wilks test); tests also exist for equality of variances (e.g. Levene's or Ansari-Bradley test)

Nonparametric tests make no assumptions about data distributions, and can be also be used on ordinal data; they are calculated on data ranks rather than actual values; they are also better-suited for small samples

Normal distribution

In populations and sufficiently large samples, a lot of data (of any kind) is distributed **normally**:

- Most population members are grouped around the mean
- Deviations are symmetrical to the mean
 - about 68% of the data falls within $\pm 1~\text{SD}$ from the mean
 - about 95% of the data falls within ± 2 SD from the mean
 - about 99.7% of the data falls within ± 3 SD from the mean

Statistically speaking, this is a highly desirable data distribution; it is the distribution required for parametric tests

Example - normal distribution of IQ

Mikhail Ryazanov / Wikimedia Commons / CC-BY-SA-3.0

49 / 57

Data distribution in corpora

http://www.intmath.com/exponential-logarithmic-functions/7-graphs-log-semilog.php

Probably more often than not, normal is **not** the kind of distribution found in corpus data, even for non-Zipfian phenomena, so it is important to be aware of nonparametric tests (Fig: Zipfian distribution of word frequencies)

Postional measures vs. the normal distribution curve

User: Jhguch / Wikimedia Commons / CC-BY-SA-2.5

Independent vs. dependent samples

Two kinds of samples based on the relationship between what is being compared, important because they require different tests:

• Independent samples

- sample members are independent of each other
- e.g. tweets by male and female users

• Dependent samples

- sample members are related to each other (paired)
- e.g. texts from originals and their translations

Not an easy distinction in corpus analysis! (easier in experimental studies: different vs. same participants)

Research designs, tests, descriptives, graphs

Typical design \rightarrow test mappings:

- Frequency-based → Chi-square test(s) categorical variables, analysing if these variables are related to or independent from each other; frequencies by category; mosaic plots
- <u>Correlational</u> \rightarrow <u>correlation test</u> numerical variables, analysing whether they co-vary; mean and SD or median and ICQ; scatterplots
- Variance-based (two samples) → Wilcoxon rank sum test / t-test categorical independent and numerical dependent variable, analysing if the means/medians of two (sub)categories differ from each other; mean and SD or median and ICQ; boxplots (or bar/line plots) [independent samples, version for dependent samples available]
- Variance-based (more than two samples) \rightarrow Kruskal-Wallis test / one-way ANOVA means/medians of more than two (sub)categories ...

Doing statistical tests in R

The above tests can be performed via these functions:

Function	Test
chisq.test()	Chi-square
<pre>cor.test()</pre>	correlation ("spearman" /" pearson", non/parametric)
wilcox.test()	Wilcoxon rank sum test (nonparametric)
t.test()	<i>t</i> -test (parametric)
kruskal.test()	Kruskal-Wallis test (nonparametric)
oneway.test()	one-way ANOVA (parametric)
<pre>shapiro.test()</pre>	Shapiro-Wilk normality test
ansari.test()	Ansari-Bradley equality of variances test

*Add paired=TRUE to t.test() and wilcox.test() to use them as tests for dependent samples

Summary of how to choose a test

For the tests we covered:

One-way ANOVA / Kruskal-Wallis test...

Thank you!

m.milicevic@fil.bg.ac.rs

· ㅁ ▶ · 4 @ ▶ · 4 필 ▶ · · 필 · · · 이 ٩ @

56 / 57

Special thanks to the organisers!

-ロト 4個 ト 4 目 ト 4 目 ト 1 目 - つくで