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Introduction

* Popularity of microblogging services
* Twitter microblogging posts are short
(up to 140 characters)
* Known as tweets
* Around 6,000 tweets are posted every second!

* In order to analyze opinions in tweets, we apply
sentiment analysis

The movie was fabulous! <%

The movie was horrible! =
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The Train Dataset

* 1,600,000 labeled tweets
* Positive and negative emoticons as labels
* Origin: Go et al. (2009)

Examples:

+ Goodnight everyoneeee :) Love yall
+ | have a good feeling about today ;)
+ 000 the ice cream van is here... yaaaaaay :D

- | hate when | have to call and wake people up :(
- | don't have any chalk! :-/ MY CHALKBOARD IS USELESS




The Test Dataset

498 hand-labeled tweets

Tweets belong to different domains

182 positive, 177 negative, and 139 neutral tweets
Origin: Go et al. (2009)
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Sentiment Analysis Approaches

* Machine Learning
* Lexicon-based
* Linguistic approach




Sentiment Analysis Algorithm Selection

The first experiment

* Test dataset: 177 negative and 182 positive hand-labeled tweets

* The machine learning approach:

o The linear SVM (SVMPre), Naive Bayes, and k-Nearest
Neighbors (the LATINO library)

o Train dataset: 1,600,000 smiley-labeled tweets

* The lexicon-based approach:

o The opinion lexicon (2,006 positive and 4,783 negative words)
(Hu & Liu, 2004; Liu et al., 2005)

Accuracy on the test set
SVM NB K-NN Lexicon
79.11% | 75.21% | 72.98% | 73.54%




Sentiment Analysis Algorithm Selection

The second experiment

* Stratified ten-fold cross-validation on 1,600,000 smiley-labeled
tweets

* The machine learning algorithms

10-fold cross-validation
SVM NB K-NN
78.55% 75.84% slow

* The SVM approach in used the rest of our analyses




Linear Support Vector Machine (SVM)
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Data preprocessing

* Unique phrases, slang, grammatical and spelling mistakes
in Twitter posts

@jenny | am with my Sisterrrrrrr and we are buying
Saapl stocks #happy !

* Twitter-specific and standard preprocessing




Twitter-specific preprocessing

 Usernames @ TwitterUser — atttTwitterUser
 Stock Symbols SGOOG - stockGOOG

- Usage of Web links www.abc.com - URL

Hashtags #bowling — hashbowling

Exclamation and question marks (e.g., replacing

Letter repetition gooooooooood — goood

Negations not, isn’t, aren’t,... — NEGATION




Standard preprocessing (1)

* Text tokenization
O Regex

e @jenny we are buying Saapl stocks #happy !
https://www.apple.com

° TOkenS <II@H Iflennylll 1 II Harell ”buylng” IISH Ilaaplll
tocksll II#II Hhappyll H!II Ilhttpsll II//II IIWWWII II. I Happ/e
mn n Hcom >
O Slmple

e @jenny we are buying Saapl stocks #happy !
https://www.apple.com

" II II " mn n

* Tokens: <"jenny”, are”, "buying”, "aapl”, "stocks",
Ilhappyll Ilhttpsll IIWWWII Ilapplell ”Com >




Standard preprocessing (2)

* Stemming birds = bird
* n-gram construction

| drink coffee = <i, i drink,drink, drink coffe, coffe>
* Testing stop word removal (g, the, and, ...)

* The condition that a given term has to appear at least
twice in the entire corpus

* Constructing Term Frequency feature vectors

* A part-of-speech (POS) tagger was not used
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Preprocessing example

* @jenny | am with my Sisterrrrrrr and we are buying Saapl

stocks #happy !

 atttjenny i am with my sisterrr and we are buying stockaapl
stocks hashhappy !

» Features: atttjenni, atttjenni i, i, i am, am, am with, with, with
my, my, my sisterrr, sisterrr, sisterrr and, and, and we, we, we
are, are, are buy, buy, buy stockaapl, stockaapl, stockaapl
stock, stock, stock hashhappi, hashhappi, hashhappi !, !




Proposed Preprocessing Steps

Twitter-specific preprocessing Standard preprocessing
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Comparison With Publicly
Available Sentiment Classifiers

* Performance testing on hand-labeled tweets
(Go et al., 2009)

Sentiment tool  Accuracy on the test set

Our approach 80.22%
AlchemyAPI 83.57%
Repustate 66.57%
Text-processing 61.00%
Sentiment140 45.96%
SentiStrength 69.92%

* Advantages of our approach:
o Classification of much larger sets of tweets

o Tweet preprocessing
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The SVM Neutral Zone

* A tweet should also have the possibility of being
classified as neutral or weakly opinionated

* Two ways of identifying non-opinionated tweets:
o Fixed neutral zone

o Relative neutral zone




Fixed Neutral Zone




Relative Neutral Zone

R__iga it d <2xdy
1 ifd>2xdy

hyperplane
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Real-world Applications and
Public Availability

* The developed sentiment analysis methodology has been
applied in:

o Financial domain
o Political domain

o Environmental domain

* Public Availability:
o The ClowdFlows data mining platform

o The PerceptionAnalytics platform




The Stock Market Application

* |nvestigated whether sentiment analysis of Twitter posts
is a suitable data source for predicting future stock
market values

* The experiments indicated that sentiment analysis of
public mood derived from Twitter feeds could be used to
forecast movements of individual stock prices

* The methodology was adapted to data streams




Real-time Opinion Monitoring

* Slovenian Presidential Elections Use Case

* Bulgarian Parliamentary Elections Use Case

soocenje na POP T




Community Sentiment on Environmental
Topics in Social Networks

* The developed sentiment classifier was applied on
tweets discussing environmental issues

* Sentiment analysis was performed to discover the
sentiment of the detected Twitter communities with
respect to different topics




Implementations in the
ClowdFlows Platform

* Interactive data mining platform (Kranjc et al., 2012)

* http://clowdflows.org/
* Sentiment Analysis Widget

= Itw {’, ltw =

Filter tweets by

i&fjj itw :4#

language
@
Twitter
@

Selection of "Twitter" widget Inputs:

guery = u'beautiful’

2 ltw :j/‘; lew

Add neugral zone

= ltw ;é@%' ltw ©

Tweet Sentiment
Analysis
©

Selection of "Add neutral zone"

widget Quiputs:

‘lang': 'en',

‘reliability': 0.8552150908816,
'sentiment': 'Positive',

"text': 'RT : oh my god shes
so beautiful http://t.co/VLMRZCvkIt',




Implementations in the
PerceptionAnalytics Platform

http://www.perceptionanalytics.net/

A platform of a Slovenian company Gama System

Real-time analysis

Sentiment analysis for a number of languages: English,
Slovenian, Spanish, German, Russian, Hungarian, Polish,
Portuguese, Bulgarian, etc.
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