Sentiment analysis of Twitter microblogging posts

Jasmina Smailović

Jožef Stefan Institute Department of Knowledge Technologies

Introduction

- Popularity of microblogging services
- Twitter microblogging posts are short (up to 140 characters)
- Known as *tweets*
- Around 6,000 tweets are posted every second!
- In order to analyze opinions in tweets, we apply sentiment analysis

The movie was fabulous! 🐛

The movie was horrible!

Outline

- Twitter Datasets
- Sentiment Analysis Algorithm
- Data Preprocessing
- Identifying non-opinionated tweets
- Real-world applications of the developed sentiment analysis methodology

Outline

- Twitter Datasets
- Sentiment Analysis Algorithm
- Data Preprocessing
- Identifying non-opinionated tweets
- Real-world applications of the developed sentiment analysis methodology

The Train Dataset

- 1,600,000 labeled tweets
- Positive and negative emoticons as labels
- Origin: Go et al. (2009)

Examples:

- + Goodnight everyoneeee :) Love yall
- + I have a good feeling about today ;)
- + ooo the ice cream van is here... yaaaaaaay :D

•••

- I hate when I have to call and wake people up :(
- I don't have any chalk! :-/ MY CHALKBOARD IS USELESS
- UGHHHHHHHHHHHHHHH. life is NOT good all the time!!!!!! ;(

• • •

The Test Dataset

- 498 hand-labeled tweets
- Tweets belong to different domains
- 182 positive, 177 negative, and 139 neutral tweets
- Origin: Go et al. (2009)

Outline

- Twitter Datasets
- Sentiment Analysis Algorithm
- Data Preprocessing
- Identifying non-opinionated tweets
- Real-world applications of the developed sentiment analysis methodology

Sentiment Analysis Approaches

- Machine Learning
- Lexicon-based
- Linguistic approach

Sentiment Analysis Algorithm Selection

The first experiment

- Test dataset: 177 negative and 182 positive hand-labeled tweets
- The machine learning approach:
 - The linear SVM (SVM^{perf}), Naive Bayes, and k-Nearest Neighbors (the LATINO library)
 - Train dataset: 1,600,000 smiley-labeled tweets
- The lexicon-based approach:
 - The opinion lexicon (2,006 positive and 4,783 negative words) (Hu & Liu, 2004; Liu et al., 2005)

Accuracy on the test set					
SVM	NB	K-NN	Lexicon		
79.11%	75.21%	72.98%	73.54%		

Sentiment Analysis Algorithm Selection

The second experiment

- Stratified ten-fold cross-validation on 1,600,000 smiley-labeled tweets
- The machine learning algorithms

10-fold cross-validation				
SVM	NB	K-NN		
78.55%	75.84%	slow		

• The SVM approach in used the rest of our analyses

Linear Support Vector Machine (SVM)

Outline

- Twitter Datasets
- Sentiment Analysis Algorithm
- Data Preprocessing
- Identifying non-opinionated tweets
- Real-world applications of the developed sentiment analysis methodology

Data preprocessing

 Unique phrases, slang, grammatical and spelling mistakes in Twitter posts

@jenny I am with my Sisterrrrrr and we are buying \$aapl stocks #happy !

Twitter-specific and standard preprocessing

Twitter-specific preprocessing

- Usernames *@TwitterUser* → *atttTwitterUser*
- Stock Symbols \$GOOG → stockGOOG
- Usage of Web links www.abc.com → URL
- Hashtags #bowling → hashbowling
- Exclamation and question marks (e.g., replacing ?!??!!? by the MULTIMIX token)
- Letter repetition $gooooooood \rightarrow goood$
- Negations not, isn't, aren't,... → NEGATION

Standard preprocessing (1)

Text tokenization

Regex

- *@jenny we are buying \$aapl stocks #happy ! https://www.apple.com*
- Tokens: <"@", "jenny", "we", "are", "buying", "\$", "aapl", "stocks", "#", "happy", "!", "https", "://", "www", ".", "apple", ".", "com">

o Simple

- *@jenny we are buying \$aapl stocks #happy ! https://www.apple.com*
- Tokens: <"jenny", "we", "are", "buying", "aapl", "stocks", "happy", "https", "www", "apple", "com">

Standard preprocessing (2)

- Stemming birds → bird
- *n*-gram construction

I drink coffee → <i, i drink, drink, drink coffe, coffe>

- Testing stop word removal (a, the, and, ...)
- The condition that a given term has to appear at least twice in the entire corpus
- Constructing Term Frequency feature vectors
- A part-of-speech (POS) tagger was not used

ID	Web	Hashtags	Ex. and q.	Letter	Neg.	Stop	Avg. accuracy \pm	Avg. F-measure \pm
1	IIIIKS	v	marks	repet.		words	1000000000000000000000000000000000000	0.8142 ± 0.0046
- 1	x	Λ	x	Λ			$81.23\% \pm 0.10\%$ $81.07\% \pm 0.22\%$	0.8143 ± 0.0040 0.8197 \pm 0.0040
2	л		x		v		$81.07\% \pm 0.33\%$ $81.00\% \pm 0.90\%$	0.8127 ± 0.0049 0.8125 \pm 0.0067
3	v		~		л		$81.09\% \pm 0.20\%$ $81.06\% \pm 0.01\%$	0.8125 ± 0.0067 0.8199 \pm 0.0047
-14 E	л				v		$81.20\% \pm 0.21\%$ $81.19\% \pm 0.91\%$	0.8123 ± 0.0047 0.8121 ± 0.0041
0	v			v	л		$81.16\% \pm 0.21\%$ $81.04\% \pm 0.10\%$	0.8121 ± 0.0041 0.8101 ± 0.0047
0 7	N N	v	v	A V			$81.24\% \pm 0.19\%$ $81.0\% \pm 0.91\%$	0.8121 ± 0.0047 0.8116 \pm 0.0072
6	A V	A V	л	A V	v		$61.25\% \pm 0.31\%$	0.8110 ± 0.0073
8	л	A V	v	A V	A V		$61.23\% \pm 0.33\%$	0.8113 ± 0.0004
10	v	А	А	A V	× ×		$81.10\% \pm 0.24\%$ $81.04\% \pm 0.00\%$	0.8110 ± 0.0080
10	A V		v	X	л		$81.24\% \pm 0.22\%$	0.8110 ± 0.0049
10	N N	v	A V	X	v		$81.12\% \pm 0.20\%$	0.8109 ± 0.0046
12	A V	А	А	л	A V		$81.15\% \pm 0.20\%$	0.8109 ± 0.0042
13	A V	v	v		A V		$81.08\% \pm 0.20\%$	0.8109 ± 0.0060
14	N N	А	A V	v	A V		$81.19\% \pm 0.19\%$	0.8108 ± 0.0044
15	л	V	X	X	А		$81.21\% \pm 0.20\%$	0.8106 ± 0.0065
16		X	X	х			$81.14\% \pm 0.20\%$	0.8105 ± 0.0065
17		X	х		X		$81.19\% \pm 0.16\%$	0.8104 ± 0.0048
18		х					$81.04\% \pm 0.30\%$	0.8103 ± 0.0077
19		17					$81.13\% \pm 0.24\%$	0.8100 ± 0.0056
20		X	х				$81.13\% \pm 0.15\%$	0.8099 ± 0.0048
21				X			$81.15\% \pm 0.32\%$	0.8099 ± 0.0078
22			X	х	х		$81.12\% \pm 0.34\%$	0.8096 ± 0.0080
23	х	х	X				$81.04\% \pm 0.20\%$	0.8093 ± 0.0064
24			Х				$81.15\% \pm 0.25\%$	0.8089 ± 0.0062
25				X	Х		$81.10\% \pm 0.20\%$	0.8086 ± 0.0057
26	X	Х		Х			$81.15\% \pm 0.17\%$	0.8086 ± 0.0047
27	х		х		X		$81.09\% \pm 0.28\%$	0.8086 ± 0.0054
28		X		х	X		$81.08\% \pm 0.20\%$	0.8079 ± 0.0051
29	х	X			Х		$81.10\% \pm 0.24\%$	0.8077 ± 0.0062
30			х	Х			$81.26\% \pm 0.22\%$	0.8076 ± 0.0033
31	х	X					$81.10\% \pm 0.21\%$	0.8074 ± 0.0061
32		X			X		$81.09\% \pm 0.30\%$	0.8072 ± 0.0060
33	х	X		Х	X	X	$79.16\% \pm 0.23\%$	0.7962 ± 0.0050
34		X			X	X	$79.11\% \pm 0.24\%$	0.7942 ± 0.0045
35	х		X		X	X	$79.22\% \pm 0.20\%$	0.7936 ± 0.0057
36		X	Х	х	х	X	$79.20\% \pm 0.18\%$	0.7931 ± 0.0067
37	X		X	X	X	X	$79.22\% \pm 0.18\%$	0.7930 ± 0.0066
38	X	X	X	х	X	X	$79.21\% \pm 0.24\%$	0.7930 ± 0.0072
39	Х	х	х		X	X	$79.21\% \pm 0.21\%$	0.7926 ± 0.0054
40				х	X	X	$79.26\% \pm 0.23\%$	0.7926 ± 0.0061
41		X	X		X	X	$79.20\% \pm 0.20\%$	0.7925 ± 0.0066
42			Х	X	X	X	$79.23\% \pm 0.24\%$	0.7923 ± 0.0038
43		X		X	X	X	$79.23\% \pm 0.23\%$	0.7923 ± 0.0044
44	X			х	X	X	$79.18\% \pm 0.22\%$	0.7905 ± 0.0054
45	х	X			X	X	$79.21\% \pm 0.19\%$	0.7904 ± 0.0044
46			X		X	X	$79.21\% \pm 0.21\%$	0.7903 ± 0.0058
47	v				X	X	$79.17\% \pm 0.24\%$	0.7902 ± 0.0059
48	X				X	X	$79.18\% \pm 0.20\%$	0.7902 ± 0.0056
49	X	X				X	$78.48\% \pm 0.21\%$	0.7900 ± 0.0060
50	X					X	$78.45\% \pm 0.22\%$	0.7882 ± 0.0061
51	X			X		X	$78.58\% \pm 0.21\%$	0.7881 ± 0.0067
52		X		X		X	$78.53\% \pm 0.19\%$	0.7878 ± 0.0066
53			X	X		X	$78.62\% \pm 0.25\%$	0.7878 ± 0.0052
54	X		х	х		X	$78.63\% \pm 0.15\%$	0.7877 ± 0.0060
55	х		Х			X	$78.53\% \pm 0.20\%$	0.7870 ± 0.0057
56		X				X	$78.54\% \pm 0.14\%$	0.7868 ± 0.0052
57		Х	Х	X		X	$78.60\% \pm 0.25\%$	0.7867 ± 0.0047
58				Х		X	$78.52\% \pm 0.17\%$	0.7865 ± 0.0074
59						X	$78.45\% \pm 0.24\%$	0.7863 ± 0.0060
60	X	X	Х	X		X	$78.49\% \pm 0.16\%$	0.7860 ± 0.0053
61	X	X		Х		X	$78.50\% \pm 0.21\%$	0.7860 ± 0.0066
62	х	X	Х			X	$78.55\% \pm 0.21\%$	0.7858 ± 0.0070
63		Х	X			X	$78.49\% \pm 0.15\%$	0.7855 ± 0.0068
64			х			х	$78.43\% \pm 0.20\%$	0.7823 ± 0.0063

Preprocessing experiments

- Stratified ten-fold crossvalidation on 1,600,000 smiley-labeled tweets
- 64 combinations
- The best one:
- Avg. accuracy 81.23% ± 0.16%
- Avg. F-measure 0.8143 ± 0.0046
- o 1,198,302 features
- The accuracy of 80.22% on the test dataset

Preprocessing example

 @jenny I am with my Sisterrrrrr and we are buying \$aapl stocks #happy !

- atttjenny i am with my sisterrr and we are buying stockaapl stocks hashhappy !
- Features: atttjenni, atttjenni i, i, i am, am, am with, with, with my, my, my sisterrr, sisterrr, sisterrr and, and, and we, we, we are, are, are buy, buy, buy stockaapl, stockaapl, stockaapl stock, stock, stock hashhappi, hashhappi, hashhappi !, !

Proposed Preprocessing Steps

Comparison With Publicly Available Sentiment Classifiers

• Performance testing on hand-labeled tweets (Go et al., 2009)

Sentiment tool	Accuracy on the test set
Our approach	80.22%
AlchemyAPI	83.57%
Repustate	66.57%
Text-processing	61.00%
Sentiment140	45.96%
SentiStrength	69.92%

- Advantages of our approach:
 - Classification of much larger sets of tweets
 - Tweet preprocessing

Outline

- Twitter Datasets
- Sentiment Analysis Algorithm
- Data Preprocessing
- Identifying non-opinionated tweets
- Real-world applications of the developed sentiment analysis methodology

The SVM Neutral Zone

- A tweet should also have the possibility of being classified as neutral or weakly opinionated
- Two ways of identifying non-opinionated tweets:
 Fixed neutral zone
 - Relative neutral zone

Fixed Neutral Zone

Relative Neutral Zone

Outline

- Twitter Datasets
- Sentiment Analysis Algorithm
- Data Preprocessing
- Identifying non-opinionated tweets
- Real-world applications of the developed sentiment analysis methodology

Real-world Applications and Public Availability

- The developed sentiment analysis methodology has been applied in:
 - Financial domain
 - Political domain
 - Environmental domain
- Public Availability:
 - The ClowdFlows data mining platform
 - The PerceptionAnalytics platform

The Stock Market Application

- Investigated whether sentiment analysis of Twitter posts is a suitable data source for predicting future stock market values
- The experiments indicated that sentiment analysis of public mood derived from Twitter feeds could be used to forecast movements of individual stock prices
- The methodology was adapted to data streams

Real-time Opinion Monitoring

- Slovenian Presidential Elections Use Case
- Bulgarian Parliamentary Elections Use Case

Community Sentiment on Environmental Topics in Social Networks

- The developed sentiment classifier was applied on tweets discussing environmental issues
- Sentiment analysis was performed to discover the sentiment of the detected Twitter communities with respect to different topics

Implementations in the ClowdFlows Platform

- Interactive data mining platform (Kranjc et al., 2012)
- http://clowdflows.org/
- Sentiment Analysis Widget

Implementations in the PerceptionAnalytics Platform

- http://www.perceptionanalytics.net/
- A platform of a Slovenian company Gama System
- Real-time analysis
- Sentiment analysis for a number of languages: English, Slovenian, Spanish, German, Russian, Hungarian, Polish, Portuguese, Bulgarian, etc.

Bibliography

- Smailović, J., Grčar, M., Lavrač, N., & Žnidaršič, M. (2014). Stream-based active learning for sentiment analysis in the financial domain. *Information Sciences*, *285*, 181–203..
- Kranjc, J., Smailović, J., Podpečan, V., Grčar, M., Žnidaršič, M., & Lavrač, N. (2014). Active learning for sentiment analysis on data streams: Methodology and workflow implementation in the ClowdFlows platform. *Information Processing & Management*. doi:http://dx.doi.org/10.1016/j.ipm.2014.04.001.
- Sluban, B., Smailović, J., Juršič, M., Mozetič, I., & Battiston, S. (2014). Community sentiment on environmental topics in social networks. In *Proceedings of the 10th International Conference on Signal Image Technology & Internet Based Systems (SITIS), 3rd International Workshop on Complex Networks and their Applications* (pp. 376–382).
- Smailović, J., Grčar, M., Lavrač, N., & Žnidaršič, M. (2013). Predictive sentiment analysis of tweets: A stock market application. In *Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data* (pp. 77–88). Lecture Notes in Computer Science Volume 7947. Springer Berlin Heidelberg.
- Smailović, J., Grčar, M., & Žnidaršič, M. (2012). Sentiment analysis on tweets in a financial domain. In *Proceedings of 4th Jožef Stefan International Postgraduate School Students Conference* (pp. 169–175).
- Smailović, J., Žnidaršič, M., & Grčar, M. (2011). Web-based experimental platform for sentiment analysis. In Proceedings of the 3rd International Conference on Information Society and Information Technologies (ISIT).

Thank you!